<dd id="0cpae"></dd>
<tbody id="0cpae"></tbody>
<dd id="0cpae"><pre id="0cpae"></pre></dd>
    1. 400-700-9998
      歐美大地 基樁檢測
      基樁檢測
      滑動測微計在單樁靜載試驗中的應用
      發布時間:2012-05-27 瀏覽次數:42434 來源:歐美大地

      摘要: 本文介紹了瑞士Solexperts公司滑動測微計(Sliding Micvometer)的原理及其在單樁靜載試驗中的應用。試樁類型包括鋼管樁、灌注樁、方型預制樁、預應力管樁、支盤樁……等。該儀器可連續地測定樁身每米內的平均應變,通過荷載應變關系曲線可較準確地計算樁側摩阻力、端阻力、最大彎矩點,臨介水平荷載、極限水平荷載、撓度曲線、負摩阻力等樁基設計的主要參數,還可全面地評價樁身質量。多個工程實例表明,這種儀器是一種高精度、使用方便、在巖土工程領域具有廣闊應用前景的儀器。

      關鍵詞:滑動測微計、單樁靜載試驗、正負摩阻力、端阻力
       

      1、概述

      以往樁身應變測量一般采用鋼筋計、混凝土應變計或壓力盒,由于探頭與介質之間無法做到理想匹配以及電測元件零點飄移,實測結果誤差較大,即使測量結果較可靠,也只能代表測點處的應變值,是一種典型的點法監測(Pointwise observation)方法。

       

                

       

      圖1(a) 計算模型                圖1(b) 三種直徑鋼筋計的實測力及應變值

       

      軸對稱有限單元法計算表明:由于鋼筋計的直徑大于鋼筋直徑及二端的凸出部份,它在樁中的實測應力及應變均大于實際應力或應變,如圖1所示,20、30、40mm鋼筋計的力增長率為27.8——21.1%,應變增長率為30.6——18.2%。

      由于應變計的彈性模量不等于混凝土的彈模,混凝土應變計也存在同樣問題,當假定應變計的彈模介于2——55GPa時,實測應變增長27——11%,一般弦式應變計彈模約為0.5——0.8GPa,因此誤差更大,如圖2、3所示。

       

                   
       
                         弦式應變計                                 混凝土                    

         圖2 計算模型                 圖3 應變計實測應變與計算應變對比

       

      80年代初期,瑞士聯邦蘇黎世綜合科技大學Kovari教授等人提出了線法監測原理(Linewise observation)及相應的測試技術——滑動測微計(Sliding Micrometer——ISETH)[1]、[2]、[3]。

      滑動測微計主體為一標距長1m,兩端帶有球狀測頭的位移探頭,內裝一個線性電感位移計和一個NTC測度計。為了測定線上的應變及溫度分布,測線上每隔1m安置一個具有特殊定位功能的環形標,其間用硬塑料(HPVC)管相連,滑動測微計可依次測量兩個環形標之間的相對位移,并可用于多條測線(圖4、5)。

         

      圖4 滑動測微計 

       


      5 滑動測微計測試原理

       

      相對于試樁中的鋼筋計、壓力盒等點法固定式儀器而言滑動測微計具有如下優點:
              (1)    連續地測定標距為1m的測段平均應變,分辨率高(1με),任何部位微小變形都反映在測值中,可評估構件質量,計算彈性模量。傳統方法只能測定幾個點的應變,兩點之間的變形只能推斷,而且測點處的應變由于探頭介入而產生局部應力畸變,其測量值將偏離真實值。
              (2)    傳統方法是將被測元件預埋在構件內部,不僅測點有限,而且易于損壞,更主要的是零點飄移無法避免,不能修正。新方法只在構件內埋設套管和測環,用一個探頭測量,簡單可靠,不易損壞,而且探頭可隨時在銦鋼標定筒內進行標定,筒體溫度系數小于1.5×10-6/°C,可有效地修正零點飄移,特別適用于長期觀測。
              (3)    新方法所用的探頭具有溫度自補償功能,溫度系數小于2×10-6/°C,而且附有一支分辨率為0.1°C的NTC溫度計,可隨時監測構件溫度,特別適用于長期監測,例如:樁身負摩阻力監測,巖土工程、鋼或混凝土等大型構件長期監測等,以區分溫度應變及應力導致的應變,這是傳統方法無法做到的。
              (4)    對于承受橫向力的大型構件,如樁、地下連續梁,大壩等,平行埋設二條測線,利用應變差計算橫向位移,其分辨率和精度比常用的傾斜計相應指標高一個量級,可達1×10-5,而且可用于任何方向鉆孔中。[4]

      2.應用實例

      從1987年開始,本項測試技術首先在我國北侖電廠試樁工程中應用,隨后普遍應用于陜西蒲城電廠、山西河津電廠、陽泉第二電廠、陜西寶雞第二電廠試樁,它適用于各種土層及各種樁型。近10年來,歐美大地儀器公司及巖泰高新技術公司利用瑞士滑動測微計(Sliding Micrometer)測定了幾十個工程、幾百條試樁,均取得了滿意的結果。 

      2.1垂直靜載試樁

      試驗采用錨樁反力形式,慢速維持荷載法加壓。加載前自上而下及自下而上二次測定每條試管中的初始讀數,以保證測試精度,每級荷載穩定后測定相應讀數,其差值即為各級荷載下每一測段的應變值。在鋼筋籠的對稱部位平行埋設了二條測管,測管中每隔1m安裝一個錐形合金測環。采用兩管相應測段的平均應變進行分析計算,從而避免了加載時的偏心影響。當用于水平試樁時,二條測管的連線方向必須和推力一致。

      由于鉆孔直徑及樁身混凝土質量的差異,實測數據不可避免地存在一定誤差,不能直接用實測值計算軸向力及摩阻力,否則將使誤差惡性放大,甚至正負摩阻力交替出現等不合理現象。因此必須首先用擬合法對實測應變曲線進行磨光處理。[5]

      根據各級荷載下樁頂應變或回歸處理后的零點應變可計算彈模隨應變量級的變化規律,一般可以用一元一次方程表達,如Ei=A-B×εi(GPa),計算軸向力和摩阻力時采用不同的彈模值,如下式所示:

      軸向力計算公式為:     Qi=Ai×Ei×εi(kN)

      單位摩阻力計算公式為:  fi=( Qi-Qi+1)/(πD)(kPa)

      2.1.1摩擦樁

      圖6為二條測管在各級荷載下的實測應變,由于樁頂擴大頭,故應變較小,此外東測管上部應變較大,西測管上部應變較小,這是由于加載偏心影響,平均后就正常了。26、31、41m處的應變較高,表明該處混凝土質量較差或孔徑較小 
      圖7、8分別為回歸處理后的應變曲線及摩阻力曲線。

       
      圖6(a)東測管實測應變

      為您推薦
      午夜电影网
      <dd id="0cpae"></dd>
      <tbody id="0cpae"></tbody>
      <dd id="0cpae"><pre id="0cpae"></pre></dd>